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Abstract--The thermocapillary migration of a fluid droplet located inside a liquid drop in a space laboratory 
is analyzed. The quasi-static momentum and energy equations are solved at the instant when the droplet 
passes the center of the drop. Results are presented for prescribed axisymmetric distributions of tem- 
perature on the drop surface. 

INTRODUCTION 

The free fall environment aboard orbiting spacecraft offers a unique opportunity for scientific 
experimentation as well as the production of new materials. In free fall, materials may be 
processed without the need for a container. Such containerless processing avoids hetero- 
geneous nucleation and contamination by the container wall and offers the opportunity for 
making new and useful materials such as optical and laser glasses (Nielson & Weinberg 1977, 
Weinberg 1978). 

The significant reduction of buoyancy in orbit has interesting consequences in multiphase 
systems such as liquid drops containing a dispersion of bubbles or droplets of a second phase. 
The migration of the droplets due to the reduced buoyancy is likely to be overshadowed by 
movement due to interfacial tension gradients, and migration induced by electrical and/or 
magnetic fields. Since it is desirable in some instances, such as in glass processing in space, to 
induce the migration of gas bubbles for eliminating them from the melt, we have begun a 
theoretical study of this phenomenon. We also plan to conduct experiments aboard the Space 
Shuttle on this subject, at an appropriate future date (Subramanian & Cole 1979; also see 
Naumann 1978). In the present article, our objective is to construct an approximate theoretical 
description of the slow migration of a single fluid droplet/bubbler located inside a liquid dropt 
in free fall under the action of a specified axisymmetric temperature field on the drop surface at 
the instant when the fluid droplet/bubble is concentric with the drop. This problem is not 
necessarily limited in scope. First, it will yield useful first order information on the effect of a 
free outer interface on the thermal migration process of the droplet. In addition, when the 
center of the droplet is close to the center of the drop, the present analysis will provide a 
reasonable approximation to the migration velocity of the droplet. This latter case would 
normally be handled by employing a system of bispherical coordinates. However, this coor- 
dinate system has a singularity when the drop and droplet are concentric. This necessitates the 
present analysis using spherical polar coordinates when the droplet is at the center of the drop. 
We have, in fact, addressed the more general problem of an eccentrically located bubble using 
bispherical coordinates. The results will be reported in a subsequent article. 

When a fluid droplet (gas or liquid) is located in a liquid medium, the consequence of a 
temperature gradient at the fluid--liquid interface is to cause a surface tension gradient which 
results in a tangential stress on the interface causing interfacial movement. By viscous traction, 
the surrounding fluid is set into motion, and as a result the droplet will move in a liquid medium 
in the presence of a temperature gradient. The direction of the movement is toward the pole 
with lower surface tension which is usually the warmer pole. This phenomenon is well 

*Authors to whom correspondence may be addressed. 
tThroughout this work, the terms droplet and drop will be used with the connotations designated in this sentence. 
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illustrated in a film by Trefethan. (In the present case, in addition to this thermocapillary drift, 
the droplet would also be dragged by the bulk liquid motion induced by the presence of 
temperature gradients on the drop surface.) Since the appearance of the work of Young et al. 

(1959) wherein both experimental results and a first order theory (valid in the limit of zero 
Marangoni number) were reported, several articles have appeared on this subject. The literature 
has been discussed in detail by Subramanian (1981) who has extended the solution of Young et 

al. for small values of the Marangoni number using the method of matched asymptotic expan- 
sions. 

The problem of steady thermocapillary flow in a drop in "Zero Gravity" was considered by 
Dragoo (1974), who analyzed it in the creeping flow limit using the method of normal modes. 

Happel & Brenner (1965) indicate that many authors have treated the creeping flow problem 
for the motion of a sphere at the instant it is concentric with an outer spherical container. 
Calculations for the drag with a solid outer shell have been reported by Cunningham (1910) and 
Lee (1947) for a solid inner sphere, and by Haberman & Sayre (1958) for a fluid inner sphere. 
Happel (1958) has treated the case of a solid sphere concentric with a spherical fluid outer 
boundary. 

In the present problem, it is convenient to solve the theoretical model equations for the 
general case of a fluid droplet of arbitrary viscosity and thermal conductivity located concen- 
trically inside a liquid drop. Thus, at first, the general solutions will be developed. The limiting 

o 

case of a gas bubble  present inside a liquid drop is of some interest in applications to glass 
processing in space. The results therefore will be specialized for this case in :the section on 
discussion. 

ANALYSIS 

We shall consider the migration of a fluid droplet at the instant it passes the center of a 
liquid drop with a specified steady axisymmetric temperature distribution on the drop surface. 
The drop is held fixed in a laboratory in free fall. We shall assume both the fluid droplet and the 
liquid drop to remain spherical and assume constant physical properties with the exception of 
the interracial tensions on the two fluid-fluid interfaces which will be assumed to vary linearly 
with temperature. The flow is assumed to be incompressible and Newtonian. Our objective is to 
determine the migration velocity of the fluid droplet induced by thermocapillarity at the instant 
it passes the drop center. 

A gas bubble may be modelled by using the appropriate limiting values for the physical 
properties of the droplet phase. Properties of the droplet phase are denoted by a carat. A sketch 
of the coordinate system is provided in figure 1. The appropriate scaled equations of motion and 

Figure 1. Schematic of the liquid drop-fluid droplet system. 
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energy may be written as follows. For the liquid in the drop, 

r0v+ .vv] - v P +  v = V2v 

NM~, + v . V T  =V2T. 

[1] 

[21 

For the droplet phase, 

R~[~- v 'V~ = - =  -V2~ [31 
p v 

^ 

NM~[-~- + 13 • V~'] =-o~V'T" . [4] 

In the above equations, v, T and P are the scaled velocity, temperature, and pressure fields 
respectively in the liquid drop. The same fields inside the droplet are designated by a carat. O, v 
and a represent the density, kinematic viscosity, and the thermal diffusivity respectively of the 
liquid in the drop with similar symbols with a carat designating the droplet phase. The length scale is 
the drop radius a. A velocity scale obtained from the tangential stress balance at the drop surface 
which induces the liquid motion, is given by 

Vo - [5] 

The pressure scale Po and time scale to are given by 

191 Po = ; [61 a 

a 
to = -- .  [7] 

l)o 

Here, dtrd/dT is the rate of change of interfacial tension with temperature on the outer drop 
surface and is assumed to be a constant negative quantity over the temperature range of 
interest./z is the dynamic viscosity and ATref is a characteristic temperature difference used in 
scaling the temperature field. Its definition is deferred till later. The temperature is non- 
dimensionalized by subtracting a reference value To, and dividing by ATrer. The Reynolds and 
Marangoni numbers are defined as follows: 

NRe = av__~o ; [8] 
v 

NMa = avo do'd AT¢,ef a [9] 

It can be seen from [9] that the Marangoni number plays the role of a Peclet number 
representing the ratio of convective energy transport rate to conduction. 

In spite of the conditions initially imposed, the problem still remains fairly complex and is 
nonlinear. However, a considerable simplification can be effected for molten glasses and other 
highly viscous fluids because the Reynolds number is expected to be typically several orders of 
magnitude smaller than unity. Thus, even though the Prandtl number (v/a)  can be on the order 
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of 103 or larger, the Marangoni number, being the product of the Reynolds and Prandtl 
numbers, also will be considerably smaller than unity. Thus, we shall make the quasi-static 
approximation (Happel & Brenner 1965), and ignore the convective transport of momentum and 
energy as well as the unsteady accumulation terms, making the transport equations linear. 

In view of the axial symmetry of the problem, a stream function ~ may be defined by 

1 0t~ [10a] 
vr= r 2sin0~0 

1 Orb [10b] VO ~ 
r sin 0 ar 

Similar definitions apply to the droplet phase when symbols with a carat are used. The 
quasi-static momentum and energy equations for the liquid phase may be written as follows: 

E4~ = 0 ;  [11] 

V2T = 0.  [12] 

Similar equations may be written for the droplet phase. The operator E 2 defined in Happel & 
Brenner (1965) is given by 

where 

a2 
E 2 = + (1 - s 2) as 2 [13] 

s = cos 0. [14] 

In view of the quasi-static approximations made here, the results will be valid only in the limit 
NRe ~ 0. However, they may be regarded as useful first approximations for small values of the 
Reynolds number. 

The boundary conditions on the temperature and velocity fields are given below. 
The temperature is prescribed on the outer drop surface. 

T(1, s ) = f ( s ) .  [15] 

Here f ( s )  is an arbitrary function of s. It may be noted that any arbitrary axisymmetric 
distribution f ( s )  may be expanded in a series of spherical harmonics. Due to the linearity of the 
problem, the effect of each of these pure modes of the surface temperature field on the flow 
inside the drop may be considered independently. 

The velocity, temperature, and the heat flux are continuous across the interface between the 
liquid drop and the fluid droplet. 

v(K, s) = ~(K, s) [16] 

T(K, s) = J'(K, s) [17] 

OT "K I¢ 0~" ~K, 
k~-r( , s ) =  ~ - r ( s ) .  [18] 

Here r is the scaled radius of the droplet and has the range 0 to 1. k is the thermal conductivity 
of the liquid in the drop. The normal component of the velocity must vanish on the outer 
surface of the drop. 

Vr(1, S) = 0 [19] 
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The droplet is assumed to have a scaled velocity U in the positive z-direction (due to the 
axial symmetry of the problem). Thus on the fluid droplet-liquid drop interface 

v(K, s ) .  iz = 13(K, s ) .  iz = U [20] 

The tangential stress balances at the two interfaces may be written as follows: 

1 _OT I 
• ro(K,S)-'~ro(K,S)= - - ~ t ~ y ~  ,=~ ; 

aT 
~,o(1, s) = -~ I,=1 

[21] 

[221 

Here, 

dT ~=~, 
dT 

[23} 

and dtri[dT, assumed negative, is the rate of change of the interfacial tension at the liquid 
drop-fluid droplet interface with temperature. In writing [22] it has been assumed that the 
viscosity of the gas phase surrounding the liquid drop is negligible compared to that of the 
liquid. With suitable boundedness conditions on the temperature and velocity fields at r = 0 and 
0 = 0, ~r, the problem statement is complete. 

Solution 
The general solution of [11] has been summarized by Happel & Brenner (1965). The solution 

of the conduction equation [12] is well-known and is reported for instance by Carslaw & Jaegar 
(1959). For the problem under consideration, 

O(r. s) = ~, [A.r" + B . r  -"+l + C.r"+2 + D.r-"+3]C~It2(s) ; 
n=2 

[24] 

T(r, s) = ~ [E.r" + F.r-~"+t)]p.(s). [25] 
It=0 

Similar solutions with carats may be written for the droplet phase. Here, P,(s) is the Legendre 
polynomial of order n, and C~ It2 is the Gegenbauer polynomial of order n and degree - 112. 
The latter is related to the Legendre polynomial via 

C~1/2(s~ _ P,-2(s) - P,(s) 
" -  )-fin - 1 " [ 2 6 1  

Upon use of the boundary conditions in a tedious but straightforward manner, the twelve 
constants appearing in the solutions for the stream function and temperature fields for the liquid 
drop and the fluid droplet phases may be obtained. The details are reported in the appendix. 

In the quasi-static limit considered here, inertial terms are assumed to be negligible. Thus, 
the quasi-static velocity of the fluid droplet may be obtained by setting the net force on the 
droplet to zero. An expression for this force (in terms of the coefficient Dz) is given by Happel 
and Brenner for problems with the stream function given by [24] as 

Fz = - 41rD2. [271 



586 N. SHANKAR et al. 

Thus, setting the force equal to zero (or equivalently, 02  = 0) leads to the following final result 
for the quasi-static migration velocity of the droplet. 

2 /3K(1- K 5) 5 2 

It is interesting to note that only the constant G~ in the expansion of the arbitrary surface 
temperature field in Legendre polynomials, see [A2], enters the final expression for the net 
force on the droplet and hence its migration velocity. In other words, only the P~-component of 
the surface temperature field is responsible for droplet migration at the instant the droplet is 
located concentrically within the drop. Due to their symmetry, the higher modes in the surface 
temperature field, while contributing to the flow field, do not influence the migration process in 
this case. However, if the droplet is slightly displaced from the center of the drop along the 
symmetry axis, it will migrate away from the center if the surface temperature field is a pure 
P2-mode. This may be inferred from the results for the flow field illustrated later in this work. 
The behavior for higher modes is more complex, and can be determined conveniently from an 
analysis of the eccentric problem. 

Limiting case of  a gas bubble 

In the case of a gas bubble located inside a liquid drop, the thermal conductivity and the 
viscosity of the gas may be considered negligible compared to the same properties of the 
surrounding liquid. In addition, the gradients of interfacial tension with temperature on the 
bubble-drop interface and on the outer drop surface (which is assumed to be surrounded by the 
same gas) are identical. In these limits (~, ~7--'0 and /3--> 1), [28], for the migration velocity 
reduces to 

"k K . 

DISCUSSION OF RESULTS 

Even though general results were derived in the previous section for fluid droplets inside 
liquid drops, we shall focus our attention here on gas bubbles located inside liquid drops. These 
systems are of considerable importance in space processing, and furthermore, not much 
information is available on interfacial tension gradients in liquid-liquid systems of potential 
importance in space applications. 

It was noted earlier that only the Prcomponent of the surface temperature field contributes 
to the bubble migration process when the bubble is concentric with the drop. Due to the linearity 
of the problem, it is convenient to illustrate the influence of pure modes of the surface 
temperature field on the flow inside the drop independently so that the symmetry due to the P2 
and higher modes may be observed. For this, one may let 

Gj = 6,j [30] 

where the nth mode of the surface temperature field P,(s)  is excited. It should be noted that 
[30] implies the choice of ATr, f. For instance, for n = 1, ATref is simply the temperature 
difference between one of the poles and the equator of the drop. Similar interpretations may be 
made for the higher modes. 

Figures 2-7 illustrate isotherms and streamlines for the first three Legendre modes of the 
temperature field on the drop surface. In all cases, a representative value of the scaled bubble 
radius K = 0.5 has been used. Due to the axial symmetry of the system, sections through 
meridian planes are shown. It may be observed that in all cases, the isotherms curve to meet the 
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T=I.0 

-1.O 

ISOTHERMS, PI- MODE 
K=O.5, AT=O.! 

Figure 2. Isotherms for the drop-bubble system for a P~-mode temperature field on the drop surface; scaled 
bubble radius K = 0.5. 

~=0 

STREAMLINES, PI- MODE 
K=O.5, &~, =O.01 

Figure 3. Streamlines for the drop-bubble system for a Pl-mode temperature field on the drop surface; 
scaled bubble radius K = 0.5. 
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Figure 4. Isotherms for the drop-bubble system for a P_,-mode temperature field on the drop surface; scaled 
bubble radius K = 0.5. 



~ .o  

588 N, SHANKAR et al. 

STREAMLINES, P=- MODE 
K=O.5, A~I, =0.003 

Figure 5. Streamlines for the drop-bubble system for a P_,-mode temperature field on the drop surface; 
scaled bubble radius K = 0.5. 

T=I.0 
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~ 0.447  

-1.0 

ISOTHERMS, P3- MODE 
K : 0.5, AT:O.1 

Figure 6. Isotherms for the drop-bubble system for a P3-mode temperature field on the drop surface; scaled 
bubble radius K = 0.5. 
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K=0.5, A~, =0.003 

Figure 7. Streamlines for the drop-bubble system for a P3-mode temperature field on the drop surface; 
scaled bubble radius K = 0.5. 
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inner (bubble) surface normally to satisfy the requirement of negligible heat flux at the bubble 
surface. The straight lines in the streamline plots represent the boundaries of the convection 
cells, and on these lines tO--0. The stagnation rings lie in planes normal to the axis. The 
symmetry of the flows generated by the P2 and Ps modes of the surface temperature fields is 
evident from figures 5 and 7. In contrast, from figure 3 it may be seen why the Pt-mode results 
in net bubble movement. 

For an air bubble in a typical glassmelt, the ratios of viscosities (rl =/~;,~r/~Zg~) and thermal 
conductivities (¢ -- k~ir/kgI~) are typically on the order of 10 6 and 10 -~ respectively. Thus, it is 
most reasonable to assume rl --0 while the assumption of ~--0 in writing [29] may be more 
suspect. We found that for a choice of ¢ = 0.2 and K --0.5, the approximate result for a gas 
bubble given in [29] deviates from the exact result in [28] by less than 4 per cent. 

In the general case of a fluid droplet inside a liquid drop, when the surface temperature is 
specified as being a pure Pi-distribution, that is when Gj = 8u, an interesting asymptote may be 
recovered for small values of K from [28] for the scaled droplet migration velocity. For small 
values of the scaled droplet radius K (K ¢ 1), and G~ = 1, [28] reduces to 

1 2/3K 
U = ~ + (2 + 3r/)(2 + ¢) '  [31] 

If one were to calculate the streaming velocity at the center of a drop due to the above surface 
temperature distribution from Dragoo (1974), one obtains 

1 
UI = 3" [32a] 

The quasi-static velocity of a fluid droplet migrating in an infinite body of liquid with a linear 
temperature field (which corresponds exactly to the Pi-distribution on the drop surface here) 
may be obtained from a result given by Young et al. (1959) after correcting minor typographical 
errors appearing in it. In the present notation, this result is 

U2 - 2/3K [32b] 
(2 + 3-0)(2 + s~)" 

Thus, in the limit when the size of the droplet is small compared to that of the drop, we recover 
an asymptote wherein the velocity of the droplet at the center of a liquid drop is simply the sum 
of its velocity in an equivalent thermal environment in a quiescent fluid and the streaming 
velocity at the center of an identical drop containing no droplet. It may be observed from [31] 
that in the limit of small K, the streaming velocity makes the major contribution to the droplet 
migration velocity. As the relative size of the fluid droplet is increased, [31] is no longer 
applicable. It may be expected that the consequence of the tangential stress on the droplet-drop 
interface due to the interfacial tension gradient will be to oppose the streaming induced by the 
surface tension gradient on the drop surface. Thus, in general, the droplet migration velocity 
will be less than the sum of the contributions in [32a] and [32b]. It may be noted that for a gas 
bubble, even for K as large as ~6, [31] predicts a result within 5 per cent of the exact result 
given in [28]. 

For simplicity in this treatment, we assumed the interfaces to be spherical in shape, and 
ignored the balance of normal stresses which must be used to determine the interface shape. 
When there is no variation of interfacial tension around the surface of a droplet migrating in a 
large liquid body, Taylor & Acrivos (1964) showed that the droplet remains spherical when 
inertial effects are negligible. In the present case of a droplet migrating inside a drop due to 
interfacial tension gradients, it may be verified that only for a drop surface temperature 
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distribution given by the Prmode, the resulting solutions satisfy the normal stress balances and 
hence are exact. Similar observations were made by Schechter & Farley (1963) in a different 
context. These workers analyzed the influence of surfactants on the rate of settling of a fluid 
droplet in a large liquid body and showed that when there is an interfacial tension gradient, a 
spherical shape is compatible with the normal stress balance only when that surface tension 
distribution on the drop surface is assumed to be a pure Prmode. In the presence of a P: or 
higher mode of the surface temperature field, there will be deformation of both the drop and the 
droplet from a spherical shape in order to satisfy the balance of normal stresses. The principal 
contributor to this deformation will be the actual variation of surface tension along the 
interface. The gradient of surface tension with temperature for most common liquids is 
relatively insensitive to the actual magnitude of the surface tension. A typical value might be 
Idcr/dTI-~ 60/xN/m .K. Thus, a variation of 50°C on a drop surface will induce a change of 

approximately 3mN[m in surface tension. For molten glasses which possess surface tension 
values on the order of 300mN[m, this is a small variation, and the resulting deformation will be 
small. In the case of fluids of extremely low surface tension, the deformation can be large and 
can have a strong influence on the results. 

Finally, it is useful to present an illustrative set of values to justify the quasi-static 
assumptions made in this work. If the quasi-static velocity from [29] (which is valid only when a 
bubble is concentric with the drop) is used as an order of magnitude estimate of the bubble 
velocity, an air bubble 2 mm diameter, present in a molten glass drop of diameter 1 cm with a 
viscosity 10 Pa. s will take on the order of 60 s to traverse its own diameter. Using properties 
characteristic of molten glasses (Morey 1954, Stanek 1981) the Reynolds and Marangoni 
numbers may be calculated to be 3.3 × 10 5 and 1.75 x 10 2 respectively. The time scale for the 

velocity field to relax is approx. 0.02 s and the time scale for the relaxation of the temperature 
distribution is on the order of 11 s. Thus, the quasistatic assumptions may be considered 

reasonable in this situation. 

CONCLUSIONS 

The present quasi-static analysis reveals that only the P,-component of a general axisym- 
metric temperature distribution on a drop surface contributes to the thermocapillary motion of 
a fluid droplet placed concentrically inside the drop. Higher modes induce closed convection 
cells but exert no net influence on the droplet. It is shown that in the limit when the size of the 
droplet becomes small compared to that of the drop, the migration velocity of the droplet is 
given by the sum of the thermocapillary streaming velocity at the drop center and the 
quasi-static thermocapillary migration velocity of the droplet in a quiescent fluid with the same 

thermal gradient. 
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NOMENCLATURE 

liquid drop radius 
fluid droplet radius 
Gegenbauer polynomial of order n, degree - 1/2, and argument s 
operator defined in [13] 
prescribed temperature on the outer drop surface 
net force on the fluid droplet 
expansion coefficient as defined in [A3] 
unit vector in the z direction 
thermal conductivity 
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NMa 
Nae 

Po 
P 

P.(s) 
t 
s 

to 
t 

T 
U 

UI 

U2 

V 

130 
~r, t~0 

Marangoni number defined in [9] 
Reynolds number defined in [8] 
reference pressure defined in [6] 
scaled pressure field 
Legendre polynomial of order n and argument s 
radial coordinate scaled by the drop radius 
cos 0 
reference time defined by [7] 
modified dimensionless time 
temperature field scaled by ATref after subtracting a reference temperature To 
fluid droplet/bubble migration velocity scaled by the reference velocity Vo 
scaled quasi-static liquid velocity at the drop center for a P~ surface temperature 

distribution as obtained by Dragoo (1974) 
scaled quasi-static velocity of a fluid droplet migrating in an infinite body of liquid with 

linear temperature field, as obtained by Young et al. (1959) 
velocity (vector) field scaled by the reference velocity vo 
reference velocity defined in [5] 
components of the dimensionless velocity in the r and 0 directions 

Greek symbols 

a thermal diffusivity 
/3 as defined in [23] 
~0 Kronecker delta 
r/ ratio of the dynamic viscosity of the droplet phase to that of the drop phase 
0 polar angle measured from the forward stagnation point 
K ratio of the droplet to drop radius 
p, dynamic viscosity 
v kinematic viscosity 

ratio of the thermal conductivity of the droplet phase to that of the drop phase 
p density 

gd interfacial tension on the outer liquid drop surface 
tr I interfacial tension at the liquid drop-fluid droplet interface 
fro tangential component of the stress scaled by I~v(i/a 
tk stream function defined in [10a] and [10b] 

Special symbols 

ATref reference temperature 
V 2 Laplacian operator 

designates the droplet phase 
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APPENDIX 

The temperature Iield 
The boundary conditions on the temperature field may be applied to the general solution, 

[25], to obtain the four sets of constants, En, F.,/~. and Fn, as follows. 
Boundedness of the temperature field at the origin gives 

F,, =0 .  [A1] 

The prescribed temperature field on the drop surface may be expanded in a series of spherical 
harmonics. Equation [15a] then may be written as 

T(I. s) = f(s) = ~, G.P.(s). [A21 
n=O 

By using the standard orthogonal relationship for Legendre polynomials, the coefficient G. 

may be obtained as 

2n + 1 (+1 f(s)Pn(s) ds [A3] 
G . -  f j_, 

Applying [A2] to [25] we obtain, 

En + F. = Gn. [A4] 

Continuity of temperature across the droplet-drop interface gives the relation 

E,K" + F~K -'-' =/~ng n. [A5] 
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Continuity of heat flux across the droplet-drop interface results in: 

nE.r "-I - (n + I )F . r - "  2 = ~n/~.K.-1. [A6] 

Here, ~ is the ratio of the thermal conductivity of the droplet phase to the drop phase. Solving 
[A4], [A5] and [A6], we obtain the set of constants which determine the temperature field 

completely, 

G.(I + n(l + ~)) [A7] 
E. = [n(1 + ~) + 1 + (1 - ~)nK 2"+1] 

nG.K2"+I(1 - I~) [A8] 
F. = [n(1 + ~)+ 1 + (1 - ~)nK 2"+1] 

(2n + 1)G. [A9] 
/~" = [n(1 + ~)+ 1 +(1 - ~)nKZ"+l] ' 

The velocity field 
The boundary conditions on the velocity field are rewritten in terms of the stream function 

and then applied to the general solution, [24]. 
Boundedness of the velocity field at the origin gives 

/~. =/5" = O. [A10] 

Continuity of the velocity field across the fluid droplet-liquid drop interface gives the 

relation, 

nA.K "-I + (1 - n)B.K " + (n + 2)C.K "+l + (3 - n)D.K 2-" 

= n.~.K"-' + C.(n + 2)K "+~, n -> 2. [All]  

Vanishing of the normal velocity on the drop surface gives, 

A . + B . + C . + D . = O ,  n>-2. [A12] 

Using [20], which specifies the velocity of the droplet, we obtain 

A.K "-2 + B,K -t-" + C.K" + D.K t-" = - U8.2] [A13] 
n_>2. 

A.K "-2 + C.K" = - U8.2 [A14] 

Here, 8.2 is the Kronecker delta function. 

1, i = j  
8i,= 0, i # j "  [A15] 

The tangential stress in the liquid drop written in terms of the stream function is given by 

r.o = r(l ls2),12 {~_2 [n( 3 -  n)A.r"-2 + (1 -  n)(2 + n)B.r-"-'  

+ (2 + n)(1 - n)C.r" + n(3 - n)D.r I "]C.I/Z(s) 
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For the droplet phase, 

~sZ) '12 tg--21~ [n(3- n)A. r"-~" + (n + 2)(1- n)e.r"]C]'n(s) fro 
~ r(1 

Here, ~ is the ratio of the viscosity of the droplet to that of the drop phase. The balance of 
tangential stress on the drop surface gives 

n(3-n)A.+( l -n) (2+n)B.+(2+n)( l -n)C.+n(3-n)D.=n(1  -n)G._~,n>_2. [AI81 

Similarly, the balance of tangential stress on the drop-droplet interface gives 

n(2-n)A.K"-2+(l -n)(l  +n)B.K" ~+(1 -n)( l  +n)C~K"+n(2-n)D.K j-" 

2+(l-n)( l+n)d.K"l+~n(n-l)[E.  IK"-~+F. ~K-"I, n>-2. [A19] 

Equations [A11]-[A14], [A18] and [A19] may be solved simultaneously to obtain the six sets 
of constants, A~, B., C., D., A. and 0.. For n -> 2, 

B. - ! [n(n-l)[K2" 1)X.[ 2 2 n ~ )  

+~-~K(2n-3)] G"-'-U3"z~K~ "[ 2nz-4n+2 3] 

[A20] 

Here. 

A .  - 

Xn=K2n-Z(rI--I)+K 1 ~--~ --K Zn(l+rl)+K -3 1+ ~/ [A21] 

_ 1 - n ( n - 1 ) [ l + r / + 2 ~ ( 2 n  1 (1+ 
C. (2n-l ,X.{ 2 [ 7  - 3 ) - ~  ~ - ~  ~)]G.-,  

U I . 2 3)} [A22] +~n(n -  1)[K" 2_ K,-.][E._IK.-I+F. IK "]+ rly6.2K - (2n -4n + 

D. K._21 {Ua.2 K"-2n(n-1)~ ' C.K"} [A23] 
= - K ' "  2 - ~ i ~  o .  ,~-B.K-' " +  

A. = - lB. + C. + D.] [A24] 

1 [nA.K.+(I_n)B.KI .+(n+2)C.K.+2+(3_n)D.K3-.+(2+n)U6.2Kz] [A25] 
2K" 

1 C. = ~ [nA.K" + (1 - n)B.K I-" + (n + 2)C.K "+2 

+ (3 - n)D.K 3-" + nU~n2K2]. [A26] 

These constants define the stream function for the liquid drop and the fluid droplet phases. 
However, they contain the undetermined velocity of the droplet, which may be obtained by 
setting the net force on the droplet to zero. This is done in [27] and [28] of the text. 


